博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
好程序员大数据分享MapReduce中job的提交流程
阅读量:5886 次
发布时间:2019-06-19

本文共 1077 字,大约阅读时间需要 3 分钟。

好程序员大数据分享MapReduce中job的提交流程

一、MapReduce的定义

MapReduce是面向大数据并行处理的计算模型、框架和平台。

它的主要思想是:map(映射)和reduce(归约)

1)MapReduce是一个基于集群的高性能并行计算平台

2)MapReduce是一个并行计算与运行软件框架

3)MapReduce是一个并行程序设计模型与方法

二、 MapReduce的主要功能:

二、MapReduce的主要功能

1)数据划分和计算任务调度

2)数据/代码互定位

3)系统优化

4)出错检测和恢复

三、计算任务中job的提交流程

在学到这的时候,我们会面临一些问题:

1)首先面临的问题就是数据是如何分布的?

2)一个超大文件按照那种方式切割下来,分别丢到不同的机器上?

3)按照某种方式切割下来后,是如何丢到不同机器上去的?

4)某个机器分配到什么任务?如何分配的?

5)拿到任务后如何解决的?

带着这些问题,我们就需要学习一下job的提交流程,从该流程中去寻找我们问题的答案。

Job的具体提交流程,我们用文字概括如下:

1、客户端提交job到resourcemanager(rm)。

2、rm将其放到等待队列,返回jobid和文件路径信息。

3、客户端将所需要计算的资源,上传到hdfs上(包括job信息和分片信息)的存储路径。

4、客户端给rm返回一个资源准备好的信息,job放入等待队列,告诉他可以启动job,等待rm进行调度。

5、rm在调度之前,申请一个资源nodemanager(nm),nm启动container,它接收到任务到hdfs上将资源获取到container,然后跟客户端交互已经得到需要计算的资源,客户端向其发送启动applicationmaster(am)的命令。

6、am启动起来后,通过解析分片信息向rm申请运算资源(maptask)。

7、rm收到信息查看nm资源情况,通过负载均衡分配所需要的机器,nm每一次心跳都会从job的描述信息查询自己所分配到的任务,接收到任务消息的机器会从hdfs上拿取计算资源,然后跟am交互,am发送启动maptask的命令。

8、Maptask结束后,通知am,然后释放maptask资源,am向rm发出信息,申请reducetask的资源。

9、rm分配资源,am启动reducetask。

10、reducetask收集maptask完成的数据,启动reduce逻辑。执行完成后,通知am,然后释放reducetask的资源。am通知rm。am释放资源。

转载地址:http://wemix.baihongyu.com/

你可能感兴趣的文章
linux的C获取shell执行返回的结果
查看>>
关于spring mybateis 定义resultType="java.util.HashMap"
查看>>
程序员怎么留住健康?
查看>>
(转)C# 把我所积累的类库全部分享给博友(附件已经上传)
查看>>
Silverlight5 无法切换输入法,无法输入中文的原因及解决初探
查看>>
游戏开发基础:方向键的组合,八方向实现
查看>>
黑书-DP-方块消除 ****
查看>>
MySQL 分区
查看>>
我的架构经验系列文章 - 后端架构 - 语言层面
查看>>
DEFERRED_SEGMENT_CREATION
查看>>
读取手机硬件信息
查看>>
一致哈希
查看>>
The connection to adb is down, and a severe error has occured. 问题解决
查看>>
在Jenkins中配置运行远程shell命令
查看>>
代码杂记
查看>>
linux中防CC攻击两种实现方法(转)
查看>>
《Programming WPF》翻译 第9章 4.模板
查看>>
hdu2159
查看>>
Windows7+VS2012下OpenGL 4的环境配置
查看>>
Linux Kernel中断子系统来龙去脉浅析【转】
查看>>